
RL-TR-95-92
Final Technical Report
June 1995

RESEARCH ADVANCES IN
HANDLING ADAPTIVE
SECURITY

Odyssey Research Associates, Inc. (ORA)

Geoffrey R. Hird, Daryl McCullough, Stephen Brackin,
and Doug Long

ELECT EjF|
JUL 3 1 1995 I |

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19950728 037 nns QüA^nr INSPECTED 5

Rome Laboratory
Air Force Materiel Command

Griff iss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-92 has been reviewed and is approved for publication.

APPROVED:

JOHN C. FAUST
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pubic reportjTg burden far this coiecrjon of rformakn is estrnsted to average 1 hour per response, inducing the tine for reviewing hstrucbans, seaditj «dstrig data sources,
gathering and martaring the data needed, and cr»r**bng and reviewing the colecticri of Hormat^
colecticin of nformatJon, rxJuctng suggestions for redudngthJs burden, to Washington Headquarters Services, Directorate for rtormation Operations andReports, 1215 Jefferson
Davis Highway. Sute 1204, Arfngton, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washrefon, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE
June 1995

a REPORT TYPE AND DATES COVERED
Final May 94 - Oct 94

4. TITLE AND SUBTITLE

RESEARCH ADVANCES IN HANDLING ADAPTIVE SECURITY

a FUNDING NUMBERS
C - F30602-94-C-0111
PE - 33140F
PR - 7820
TA - 04
WU - PB

&AUTH0R(S) , , ,
Geoffrey R. Hird, Daryl McCullough, Stephen Brackm, and
Doug Long

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Odyssey Research Associates, Inc. (0RA)
301 Dates Drive
Ithaca NY 14850-1326

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

,9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory (C3AB)
525 Brooks Rd
Griffiss AFB NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-95-92

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: John C. Faust/C3AB/(315) 330-3241

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Static computer security policies may sometimes be inadequate for two reasons:
(1) the high-level objectives of the security policy, and the approach to
enforcing that policy, may change over time; and (2) the computer system itself may
change its structure or configuration. The goal of this project was to study dynamic
security that takes into account these two kinds of changes. The report gives the
results of our study of these issues. We address the fundamental conflict between
functionality and security that arises when the security policy must change^
dynamically. We suggest mechanisms for implementing dynamic security policies, and
methods for analyzing the consequences (dynamic lattices). We introduce "task-based"
dynamic policies. We present a foundational model of need-to-know. For systems that
must adapt and change their configurations dynamically, we identify a way of
decomposing an adaptive system that provides a systematic way of analyzing its
security and ensuring that security is maintained after and during adaptations. We
describe a method for performing security risk analysis of an adaptive system. We
sketch a way of providing tool support for the risk analysis.

14. SUBJECT TERMS . , , . ., _.
Computer security, Multilevel securxty (mis), Adaptive security,
Security policies, Adaptive security policies, (see reverse)

15 NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

1 a SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540^1-280-5500 Standard Form 298 (Rev 2-69)

Prescrbed by ANSI Std 239-18
298-102

14. (Cont'd)

Need-to-konw, Dynamic security lattices, Task-based access control policy and
risk assessment

Contents

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D
D

By...
Distribution/

Availability Codes

Dist

A-l

Avail and/or
Special

1 Overview

Task 1: Changing Access Authorizations 5
2.1 Introduction 5

2.2 Adaptive Security: Resolving Security vs. Functionality Con-
flicts 5
2.2.1 Intentional Disclosure 7
2.2.2 Intentional Interference 10
2.2.3 Mechanisms for Situation-Dependent Disclosure 11
2.2.4 Other Issues for Adaptive Security 12
2.2.5 Dynamic Security Lattices 13

2.3 A Task-Based Access Control Policy 15
2.3.1 Completeness of the Parameters 16
2.3.2 Information Flow Considerations 17
2.3.3 Need-to-Know Considerations 17
2.3.4 Trustworthiness Considerations 18
2.3.5 Multilevel Considerations 18
2.3.6 Automated Enforcement Mechanisms 19

2.4 A Simple Model for Need to Know 20
2.4.1 What Is Need-To-Know? 21
2.4.2 Temptation and Trust 26
2.4.3 Summary and Conclusions 28

Task 2: Maintaining Security in Adaptive Systems 32
3.1 Introduction 32
3.2 The Kind of Adaptation Involved 33
3.3 Maintaining Security in Adaptive Systems * 34

3.3.1 Systematic Analysis of the Security of Adaptive Systems 36
3.3.2 Other Adaptations That Have Security Consequences . 37
3.3.3 Large Scale Systems 37

4 Task 3: Risk Assessment 39
4.1 Introduction 39
4.2 Background to Risk Assessment 39

4.2.1 Yellow-Book Style Risk Analysis 40
4.2.2 System Profile Style Risk Analysis 41

4.3 Security Profiles of Adaptive Systems 42
4.3.1 System Security Profiles 42
4.3.2 Profiles of Adaptive Systems 43
4.3.3 Use of Tools: RDD-100 50

5 Future Directions 54

Chapter 1

Overview

The Problem

In certain circumstances, such as a crisis, a system may need to change its
security policy dynamically. This includes two different aspects of a security
policy: access control, and what mechanisms enforce security constraints.

There are problems associated with each aspect. For the first, suppose (in
a crisis, say) we suddenly need to let a person see more than they are cleared
to see. With respect to the usual static sort of policy, allowing the person
access is a violation. We want to be able to allow this sort of change, however,
so we need a wider framework in which to place such scenarios. Moreover,
when we do change the policy in such a way, we are very concerned with how
we do it — we want to do it so as to minimize the undesirable consequences.
In Task 1, we address these two concerns.

The second adaptive security aspect deals with the enforcement of se-
curity. Suppose a system switches to "crisis" mode of operation in which
weaker or different security enforcement is used. It now becomes a problem
to ensure that all needed mechanisms are in place. The problem here is to
analyze and control the system despite its complexity. Task 2 addresses this
problem.

Fundamental to any secure system is risk analysis. In Task 3 we address
the problem of risk analysis for adaptive systems as studied in Task 2.

Achievements

The subject of this project is a new area, at least to the literature. The aims
of the project were to take a broad view of the area, survey the basic issues,
and outline practical solutions to the various problems. We met these aims,
and furthermore made some foundational advances in a new area (need-to-
know).

On Task 1, we discuss the fundamental security vs. functionality trade-
offs that must be made in changing conditions. We suggest mechanisms for
implementing dynamic security policies. We suggest methods for analyzing
the consequences of such policies (dynamic lattices). We identify other key
areas (recovery, auditing). Also on Task 1, we determined that the basic
motivation behind the accesses granted in an adaptive security policy is the
tasks that need to be performed. Accordingly, we introduce task-based secu-
rity policies (related to, but different from, role-based access control). This
sort of policy provides an organized presentation of what needs to be be done,
taking into account the security requirements of a system.

In addition, we produced new foundational work on Task 1. Much theo-
retical (and practical) work has been done in the past on how to define and
implement security policies, and especially on how to analyze the behavior
of systems with respect to their policies. This work takes the policy as a
given. The other side of the coin — how to choose a policy, and what a
policy means in relation to all other possible policies — has not been ad-
dressed from a modelling and analysis perspective. We take the first step
in this direction by presenting a model and theory of need-to-know. This
addresses the fundamental problem that arises when determining the "who
can see what" part of a security policy: how to make the trade-off between
functionality and secrecy.

On Task 2, we identified a way of decomposing an adaptive system that
enables a systematic way of analyzing its security and ensuring that security
is maintained in the presence of adaptations.

On Task 3, we developed a method for performing risk analysis of an
adpative system. This method is an extension of the methods used for system
profiling by the NSA System Profiling Group. We sketch a way of providing
tool support for this risk analysis using RDD-100 as an exemplar.

Chapter 2

Task 1: Changing Access
Authorizations

2.1 Introduction

In this chapter we discuss the access control aspect of adaptive security poli-
cies. We survey the fundamental issues and present concrete methods for
resolving the conflict between security and functionality, and we present
methods for establishing suitable security policies in an adaptive environ-
ment.

Section 2.2 is an introduction to the basic problems for adaptive security
policies, and to mechanisms that address these. Section 2.3 presents a task-
based security policy that is well suited to capture the security requirements
of adaptive systems. In section 2.4 we present a model and theory of need-to-
know that forms the theoretical foundation for the formulation of adaptive
security policies.

2.2 Adaptive Security: Resolving Security
vs. Functionality Conflicts

To formulate a good security policy requires balancing several competing
goals. On the one hand, workers must be provided with enough information
to do their jobs, but on the other hand, providing too much information

increases the chance that the information will be misused by malicious or
untrustworthy individuals. Tools must provide workers with the functionality
they need, yet there must be sufficient barriers to prevent misuse.

We make a note here on terminology. In this document, the word "disclo-
sure" is used to refer to the result of any act or situation whereby information
becomes available to a user or process (this includes deliberate release to an
authorized person and undesired exposure to an unauthorized person).

There are two broad reasons that sensitive information may be disclosed:

1. Disclosure of sensitive information may be intentional.

2. Disclosure of sensitive information may be a side effect.

Disclosure is intentional when an activity requires that sensitive informa-
tion be given to users. In the best of circumstances, such disclosure is not a
security compromise because of the mandatory access control rules that re-
quire that information be disclosed only to a person who has the proper clear-
ance, which indicates that he can be trusted with the information. However,
in an emergency, there may be a sudden need to supply critical information
to users that goes beyond their normal clearances.

Disclosure is a side effect when an activity is partially visible to people
who are not directly involved in the activity. This kind of disclosure is often
called a covert channel, although in some cases there is nothing "covert"
about it. For example, there is no way to build a skyscraper or launch a
rocket in complete secrecy, since these activities are visible to anyone. For
an example closer to the computer world, it is impossible to commandeer the
full resources of a computer system in times of emergency without revealing
this fact to all users.

The dividing line between these two kinds of security/functionality con-
flicts is not always hard and fast. It often depends on a number of factors:
whether disclosure can be prevented, the reasons for granting clearances,
how fine-grained is the classification of data one uses, and others. For exam-
ple, consider a computer system that contains both secret and unclassified
data. If the system has "leaks" that cannot be plugged without impeding
functionality, then there are two options:

1. If the system is considered to be a multilevel secret/unclassified, then
unclassified users could obtain secret information as a side-effect.

6

2. One can consider all the information on the system to be secret. In this
case, it will be necessary to give every user who needs to use the system
a secret clearance, even those who would not normally be cleared to that
level. This case would be an example of intentional disclosure.

Task 1 addresses the access control aspect of adaptive security policies,
and so in the remainder of this chapter, we consider the issue of intentional
disclosure of sensitive information. Side effects (covert channels) are included

in the analysis of Task 3 (chapter 4).

2.2.1 Intentional Disclosure

Before discussing possible policies for dealing with intentional disclosure of
sensitive information, we need to look more closely at the criteria that must
be used for judging whether releasing information is justified. To start off, we
need to ask why one would ever intentionally release information to someone
who is not cleared for it. The answer, "Because exceptional circumstances
require it", while correct, is not the complete story. If there is a possible
circumstance under which a user is to be given top secret information, why
not simply give the user top secret clearance to begin with? The biggest
argument against this solution comes from the principle of least privilege.
The trust that is placed in a person by granting them a clearance is only
relative, not absolute. There have been a number of incidents in recent years
in which people trusted with top secret information have betrayed that trust.
To be on the safe side, standard military practice is to allow a user to have
a clearance only if there is an imminent need for it. Allowing situation-
dependent disclosure of information is a more fine-grained application of the

principle of least privilege.
There are two possible approaches to granting a user temporary, situation-

dependent access to sensitive information within the context of traditional
multilevel security. For simplicity, we will assume that the information is

contained in a file.

1. The security clearance of the user can be temporarily raised.

2. The security classification of the file can be temporarily lowered.

Both of these solutions run into problems. If the levd of the user is
raised so that he can legally see the file, then he will also be able to see other

information that he has no business seeing. On the other hand, if the level
of the file is lowered, then it will also become visible to other users who have
no business seeing it. Both situations violate the principle of least privilege.

Adding New Levels

A third alternative, which goes beyond traditional multilevel security, and is
in keeping with the principle of least privilege, is to change the levels of both
the user and the file. Let the original level of the user and the file be /„ and
lf, respectively, and let the new levels be l'u and l'f, so that l'u > l'f. These
new levels will have to be added to the security lattice in such a way that
the user is not given access to any unnecessary information, and so that the
file is not given to any unnecessary users. This means that for every level /
in the original lattice, it must be that / < Vu only if / < /„ and / > l'f only if

l>lf.
One simple choice is to use a new category, crisis. (More generally,

one might introduce a collection of new categories for different sets of users
and files.) The level of the user could be raised by giving him this new
category (without changing his hierarchical security level). The level of the
information could be changed to unclassified with a single category crisis.
This choice would make it impossible for anyone other than that user to see
the file. If it is important that every user who was formerly able to see the
file is still able to see it, this can be accomplished in one of two ways:

1. The category crisis could be added to every level in the lattice that
was originally greater than or equal to //.

2. A copy of the file could be made, so that one copy is kept at the original
level //, and the second is placed at the newly created level l'f.

The first solution is equivalent to creating a new kind of level, a disjunc-
tion level. For example, instead of making the level of the file be unclassified
with category crisis, one could instead make the new level be // U crisis,
meaning that it could be read by anyone who had level greater than or equal
to //, or who had category crisis. (An object with such a disjunction level
can be written only by someone who is able to write both objects of level //
and objects with category crisis.) Such disjunction levels have been used
in the past with ORGCON (ORGanization CONtrol) policies.

Problems with New Levels

Adding new levels to the security lattice on the fly as described above is a
workable solution if the file can be made read-only. However, if the file needs
to be constantly updated, then there is a real problem. By lowering the level
of the file so that it can be read by additional users, one also restricts who
can write the file, according to mandatory access control rules. If the file is
made unclassified with category crisis, then it can be written to only by
processes with a level less than or equal to this. In general, this restriction
would prevent the file from being updated. (Since the original level of the
file was If, it is likely that it is updated by processes of level //.)

The only obvious solutions to this problem are:

1. Continue to allow the original processes to update the file, with no
changes to their security levels. This means allowing write-downs.

2. Reclassifying all the processes that write to the file so that their new
levels are less than or equal to the new level of the file.

The first approach is equivalent to raising the level of the user to //,
and then using discretionary access control to prevent him from reading any
other files. The second approach is perhaps safer, but is significantly more
complicated, since it involves changing the level not only of a single file, but
an entire interrelated collection of files and processes.

Dynamic Lattice Approach

In adaptive security, circumstances may force disclosure of information in a
way that violates static mandatory access control. In a sense, these violations
collapse many of the distinctions between levels. This situation can lead to
an effective lattice of security levels that is coarser than the original lattice.
For example, consider a multilevel system with three security levels, unclas-
sified, confidential, and secret. If it becomes necessary to make a nonstatic
secret file readable to confidential users, then it will, in general, be impossible
to maintain the distinction between secret information and confidential infor-
mation. However, as long as both secret and confidential information are kept
away from unclassified users and files, it may still be possible to maintain
multilevel security with a reduced security lattice consisting of two levels,

unclassified, and secret/confidential After the crisis is over, it may be pos-
sible to manually separate secret and confidential information to reestablish

the original security lattice.
Recovery from information flow leaks is more complicated when it comes

to users, since there is no way to "erase" information that a user has learned
during a crisis. Security for users must involve procedural enforcement; for
example, debriefing interviews, and auditing.

The dynamic security lattice approach is developed in section 2.2.5.

A Non-MLS Approach

Another approach is to abandon using MLS security for enforcing the princi-
ple of least privilege, and instead use role-based access control with situation-
dependent access. According to this strategy, users of a system must be
cleared by mandatory security to the highest level on the system. The prin-
ciple of least privilege is enforced by making each user's access to files de-
pendent on both (1) the role the user is playing and (2) the current situation
(whether or not there is some kind of crisis brewing). This kind of non-MLS
security policy was advocated by Boebert[BK85] and Clark-Wilson[CW87].
The benefit of such an approach is that access restrictions are designed from
the start to be in accordance with the information needs of the user. However,
non-mandatory security policies suffer from the fact that there is no good
way to check for covert channels. (It is not even clear what the definition of
a covert channel would be for such policies.)

An non-MLS approach is developed in section 2.3, where we describe a
type of policy, called "task-based", that meets the needs of adaptive security.
We also discuss how to handle associated problems.

2.2.2 Intentional Interference

Another issue that is related to intentional disclosure is intentional interfer-
ence. According to the usual mandatory access control rules, a high-level
process is not allowed to interfere with low-level files or processes. (For ex-
ample, by writing to low-level files or setting low-level variables.) However,
there may be some cases where it becomes necessary to allow high-level pro-
cesses to influence low-level behavior. For example, top secret information
may reveal that a bomb has been planted in a building. If the building is

10

then evacuated (by a top secret process setting off an alarm), the result will,
strictly speaking, be a security violation. Intentional interference is (from the
point of view of information flow) equivalent to downgrading, but it differs
with respect to who is responsible for actions. In the case of downgrading,
information is made available to low-level processes, which then make de-
cisions based on it. In the case of intentional interference, the actions are
directly taken by high-level processes.

2.2.3 Mechanisms for Situation-Dependent Disclosure

There are several possible triggering mechanisms that can be used to invoke
situation-dependent disclosure:

1. The trigger may be an external signal.

2. The trigger may be the system entering a particular state.

3. Individual users may be authorized to judge whether the situation calls
for disclosure.

The last case is the most flexible and also the simplest to implement.
However, since the decision to enter the crisis mode is made "off-line", there
are no automated checks that the decision was made appropriately. For each
of these mechanisms, there is a possible opportunity for manipulation of the
system by a malicious user. This threat is alleviated somewhat by careful
auditing of all security-relevant events (see section 2.2.4). Preventing the
manipulation of the system is usually considered not a security concern but
an integrity concern. However, as can be seen in this case, integrity violations
can lead to security violations. (Strictly speaking, in such a case, there would
be no violation of the automated security policy — the ASP, as discussed
by Sterne in [Ste91]). This policy would say that information disclosure
can occur in particular circumstances, and those circumstances will actually
occur. However, manipulation of the system would be considered a violation
of the security policy objective (the SPO of Sterne). It should also be a
violation of the operational security policy (the OSP of Sterne), since this
policy includes informal rules about how users are supposed to come to their
decisions about security-relevant actions.)

11

Formalizing integrity constraints is notoriously more difficult than formal-

izing security constraints. This is because the definition of integrity depends

on the intended functionality of the system, while security can be formulated
in terms of information flow without reference to functionality. (Function-
ality considerations may go into the choices of level assignments to users,
processes, and information, but these choices are all simply parameters to
the security theory.) A common way to specify integrity is in terms of "nor-
mal forms" for data, which is really not sufficient to capture the distinction
between valid and malicious manipulation of the data.

2.2.4 Other Issues for Adaptive Security

Recovery

When information leaks during a crisis, steps must be taken afterwards to
recover as well as possible. There are several issues involved in such recovery:

1. Determining what information leaked.

2. Determining the reasons the information leaked.

(a) Who is responsible.

(b) What was the situation.

3. Determining how far the information has leaked.

(a) To which users.

(b) Into which data containers.

(c) Out of which output channels.

4. Sanitization/recovery after crisis.

(a) What to do about people?

5. Containing the leaks.

12

Auditing

There are two different ways to enforce information flow policies. The first
way is to use access control, which prevents a user from performing actions
that violate the policy. A second method is to allow the user to perform such
actions, but make sure that such actions are audited. The approach using
auditing is slightly less secure, since there is no immediate enforcement, but
it is more flexible, since it allows the user to use his judgement as to when
functionality overrides security concerns. Auditing is thus vital for adaptive
security when a user is allowed to trigger disclosure — the third possibility
listed in section 2.2.3. To the extent possible, enough auditing information
must be collected to ensure that if the user makes irresponsible judgements,

he must answer for his actions.
In a general system, there may be information flow polices that are en-

forced using both of these methods. There must then be an overall policy
determining when it is acceptable to use auditing for enforcement.

2.2.5 Dynamic Security Lattices

One way to model the conflicts between security and functionality is using a
dynamic security lattice. This approach defines, at any given time, an effec-
tive security lattice where the partial ordering is determined by the transitive
closure of the information flows that are currently enabled. In other words,
if it is possible to modify object B based on information in object A, then
in the dynamic security lattice, the level of B is greater than or equal to the
level of A. The method used here is a simplification of the approach taken

by Lee Badger in [Bad90].
The primary advantage of using a dynamic security lattice is that it pro-

vides a rough estimate of where sensitive information may have leaked fol-
lowing a change in security constraints. In order that dynamic lattices not
violate the constraints of mandatory security, it is imperative that the cur-
rent security lattice is always compatible with the official mandatory security

lattice in the following ways:

1. If a user is forbidden under any circumstances to learn information,
then the user's level can never become greater than or equal to the

level of the information.

13

2. When information is exported from the system, it is important to label
the information with a level that is greater than or equal to the level of
the sources of the information (unless there is an official downgrading

policy).

Typically, these constraints imply that all users must be cleared for all
information that they could ever, in any circumstance, receive. The dynamic
security lattices in this case are a way of enforcing a need-to-know policy.

A Model of Dynamic Lattices

To understand the impact of dynamic lattices, it is helpful to try to formalize
the issues. We assume a computer system (operating system plus applications
software) can be described by the following parameters:

• A set E of possible information-containing entities. This set will include
system variables, and files, as well as users.

• A set A of possible actions.

• For each action, there is a set R(a) of entities that are read by the
action, and a set W(a) of entities that are written by the action.

• At any time, there is a set P of permitted actions.

• The effective level lattice is defined by the requirement that for any
two entities u and v: l(u) < l(v) holds if for some sequence of entities

ej and actions a,j in P:

- e0 = u

- ej is in R(a,j)

- ej+i is in W(dj)

- eN = v

To create a policy for a system, it is necessary to specify the circum-
stances under which an action will be enabled, and a set of constraints (pol-
icy situation-dependent) on the flow relations. In some circumstances, it
may be necessary to accompany the granting of new information flow rights

14

(enabling new actions) with the rescinding of other information flow rights
in order to prevent the transitive closure of the flow rights from connecting
two entities that should never be connected. For example, it may be that
the security policy prevents information from ever flowing from A to C, al-
though in certain circumstances, information can flow from B to C, and in
other circumstances, information can flow from A to B. To enforce such a
policy, it must be that information flow from B to C is severed whenever
information flow from A to B is enabled.

While the analysis described above can be done off-line to determine
where information will flow in what circumstances, there is a method de-
veloped by Sutherland, Perlo, and Varadarajan in [SPV89] that allows for
"run-time" enforcement of changes to data sensitivity. Their approach is to
label each data object and message with a specification, not only of its current
sensitivity, but also of the circumstances under which that sensitivity may
change. As long as the labels are preserved, this approach permits run-time
determination of where information of various sensitivity has flowed, and au-
tomates the time-dependence of enforcement. However, the implementation
requires additional machinery above and beyond what is normally available

on secure systems.

2.3 A Task-Based Access Control Policy

One approach to the management of security in adaptive systems is to use
a task-based access control policy, which makes explicit the relationship be-
tween an agent's privileges and the tasks he must perform. The usual term
for this kind of policy is "role-based access control", but for adaptive systems
the term "task" is more appropriate because it emphasizes what needs to be
done rather than what we call the people who will do it.

In role-based systems, a system administrator usually groups related re-
sponsibilities together and calls that a role. However, in creating roles in such
a way, one is constrained by the implicit assumption that related responsi-
bilities should be concentrated in one individual. This assumption might be
wrong or inconvenient for several reasons:

1. As was discussed by Clark and Wilson [CW87], it may be dangerous to
give one individual unconstrained privilege in one area. K several people

15

must work together to play what might be conceptually considered a

single role, then they can keep each other honest.

2. In a crisis, it may be important to distribute privileges so that no person

becomes a "single point of failure".

3. Because a task is typically more constrained in time and scope than a
role is, it may be easier to determine the access rights that are needed
to perform a particular task than it would be to determine the access

rights to fulfill a particular role.

4. Task-based access control provides more flexibility than role-based ac-
cess control. One can in principle give an agent the authority to do
a task only once, in a particular situation. In contrast, a role implies

ongoing privileges.

In creating a task-based access control policy for an adaptive system, one

needs to determine the following parameters:

1. A collection of scenarios in which the system will have to operate.
Each scenario would be a class of situations (we describe such classes

in section 2.4).

2. The collection of tasks that may need to be performed for each scenario.

3. The collection of actions that may need to be taken to accomplish each

task.

4. The collection of objects that are involved in each action, together with
the type of access involved. (Does the action require reading the object

or writing it, or both?)

2.3.1 Completeness of the Parameters

These parameters describing the system need to be checked for completeness.
In the case of the set of scenarios, completeness involves either showing that
the collection of scenarios covers all possible, situations in which the system
can be used, or else making explicit the circumstances that are covered by
the analysis. It is also necessary to show that the set of tasks are complete

16

for each scenario, the set of actions are complete for each task, and the set
of objects are complete for each action.

Of course, it may not be possible to make a formal and rigorous demon-
stration of completeness because of the inherent complexity and fuzziness of
real-world objectives. However, it is possible to improve the chances that
nothing was overlooked by using a fault-tree analysis. A fault-tree analysis
organizes the set of situations into a tree of possibilities. At each node of the
tree is attached a question about the situation, which has a finite number of
possible answers. For example: "Is the system in war mode?" has two pos-
sible answers, "yes" and "no". Underneath a node is a number of branches
corresponding to each possible answer to the question. Each inherits all the
answers from higher nodes of the tree. If the questions asked at each node
are not formal, then there is no way to prove rigorously that the tree is com-
plete, but it can be tested for completeness by a "devil's advocate". The
advocate should be someone other than the people who constructed the tree.
The advocate tests the completeness of the tree by constructing a number of
hypothetical situations, and then for each situation, answering the questions
appropriately until he or she finds a leaf node that corresponds to the situa-
tion. The system designers must then give an argument that the scenarios,
tasks, actions, and objects are all sufficient to cover this situation.

2.3.2 Information Flow Considerations

After demonstrating as far as possible the completeness of the set of param-
eters used to describe the system, it is necessary to perform an information
flow analysis on the system. Since the set of actions performed is dependent
on the scenario, it may be necessary to consider each scenario separately for
information flow. The information flow analysis for each scenario can then
be performed according to the rules given in section 2.2.1.

2.3.3 Need-to-Know Considerations

It is not enough simply to consider the information flows that are directly
involved in each action (this is discussed further in section 2.4). It is also
necessary to take into account what kind of information is needed for an agent
to be able to determine what action to take. Therefore, for each scenario and
each task, at least a rough description must be made of the criteria for taking

17

actions. For each criterion, it is necessary to determine what information an
agent needs to know in order to decide whether that criterion is met. At this
point, it is helpful to decide for each scenario a way to partition tasks among
agents. Completeness of the set of actions must be rechecked to make sure
that each agent receives the information he needs to perform his tasks.

2.3.4 Trustworthiness Considerations

After partitioning tasks among agents, and determining the information flows
in the system for each scenario, it is necessary to ask whether any agents will
be given a dangerous amount of information (as defined later in section 2.4)
in any scenarios. If so, then if possible, the tasks must be repartitioned. If
it is not possible to repartition the tasks to eliminate dangerous concentra-
tions of information, then other steps must be taken to decrease the risk
of malicious agents. Among these steps are: (1) adding more auditing to
increase the chance that malicious agents will be caught, and (2) increasing
the qualifications for the involved agents, which means choosing agents that
have more extensive background checks and evidence of trustworthiness.

2.3.5 Multilevel Considerations

For multilevel systems, other checks must be made to be sure that the in-
formation flows created to satisfy need-to-know constraints — the "internal"
notion of security — also respect externally-imposed sensitivity levels — the
"external" notion of security. There are two such external constraints that
must be respected: (1) an agent must not receive labeled sensitive informa-
tion unless he is cleared for it, and (2) information may flow from labeled
external inputs to labeled external outputs only if the label of the output is
greater than or equal to the label of the input. These multilevel considera-
tions further restrict the possible clearances of system agents and the possible
information flows that the system can permit. A mismatch between external
and internal notions of security can occur in several ways:

1. The necessary clearances of agents may not be the same. This is eas-
ily resolved by requiring that agents meet both internal and external
clearance requirements. However, this resolution may run into practical

18

considerations, since there is a limited supply of high-clearance users,
and there may be other factors restricting what agents are available.

2. System functionality may inherently involve flows that violate the ex-
ternal security constraints. If this is the case, it is a very serious sit-
uation that has no easy remedy. In some circumstances, it may be
enough to interpose a human reviewer for data that leaves the system
that may be "contaminated" with data of higher or incomparable sensi-
tivity. The reviewer would have to take into account the internal data
flows determined for the system in order to estimate the amount of
sensitive information that could have leaked into an output. If the use
of a human reviewer is impractical, either because timeliness prohibits
a lengthy review process, or because it is too difficult for a human to
judge the seriousness of the leaks, then it may be necessary to redesign
the system or its interface with other systems. In some circumstances,
it may help to encrypt the outputs so that they can legitimately be sent
out at a lower security level than the sensitivity of the data it contains.

3. External security may be insufficient to enforce internal security re-
quirements. The internal trustworthiness analysis determines that agents
should be prevented from learning certain information, depending on
the tasks the agents must perform and the clearances of the agents.
However, if the external label for this information is unclassified, then
it is impossible to prevent the agents from learning the information
through external means. This is another very serious circumstance.
There are several responses to such a situation. First, it may be possi-
ble to introduce new categories that are respected by external systems
that will make sure that the sensitive information does not make it to
agents that might misuse it. Another possibility is that the external
information can be encrypted, so that external access control is not
needed. A final possibility is just that a higher level of trust must be
demanded of the agents, so that agents with higher degree of trustwor-
thiness must be used.

2.3.6 Automated Enforcement Mechanisms

Some systems, such as LOCK [FHOT89], provide support for role-dependent
access control, and these can be adapted to enforce task-based access con-

19

trol. In more standard systems, it is possible to use mandatory access control
mechanisms (MAC) to enforce information-flow restrictions and to use dis-

cretionary access control to restrict users further so that they can perform
only actions that are relevant to their tasks. One problem with using MAC
to enforce a nonstandard policy is that it is necessary at all times to keep
track of the externally defined sensitivities of data. If the set of external
levels is small enough, and the set of possible internal levels is rich enough
(for example, if the number of category is large enough), then it is possible to
encode both internal and external security labels in the same label field. This
approach, of course, assumes the compatibility of the internal and external
notions of sensitivity. If the two notions clash, then special provisions must

be made ahead of time, as described above.

2.4 A Simple Model for Need to Know

A security policy for sensitive information is an attempt to balance people's
needs for information to do their jobs against the risks of misusing that in-
formation. The approach taken in the military has been to assign a clearance
(or access rights) to each authorized agent that reflects what type of sensi-
tive information that agent can see. An agent's clearance is based on two

considerations:

1. The agent's need to know.

2. The agent's trustworthiness.

Roughly speaking, an agent's trustworthiness has been indicated by the
agent's hierarchical level (either unclassified, confidential, secret, or top-secret),
while his or her need-to-know has been indicated by a combination of his or
her assigned security categories, working groups, or file-by-file discretionary

access rights.
In the traditional view of security, an agent's trustworthiness is not as-

sumed to change dynamically, so any changes to his or her access rights is
due either to changes in need-to-know, or to a change to the balance between

need-to-know and security.

20

2.4.1 What Is Need-To-Know?

In military security, access to information (as well as other kinds of access) is
governed by the principle of least privilege. Following this principle, an agent
must be given the least information necessary to do his or her job. Before
information is given out to the agent, it must be established that the agent
has the appropriate need-to-know.

In most work on theoretical security, the criteria for deciding need-to-
know are left outside of the theory, because it is considered too complicated
and too subjective to submit to rigorous analysis. But it is not difficult to
come up with a simple model of need-to-know that nonetheless illustrates
many of the issues involved in situation-dependent security.

Situations and Actions

Our model of need-to-know starts with the case of a single agent with a
job to perform. At any moment, the agent is in some situation and must
make a decision about what action to perform. There is one or more actions
that the agent could perform that would be considered acceptable for the
situation, while other actions would not be acceptable for that situation.
The agent's responsibility is to choose some acceptable action and perform
it. For simplicity, we ignore for now the complications arising from multiple
agents, and we also ignore the fuzziness inherent in knowing what is an
acceptable action for a given situation.

Knowledge and Sufficient Knowledge

The agent's job is complicated by the fact that he does not know completely
what the situation is. All he knows is some collection of facts about the
situation: the facts that he is allowed to learn, based on his clearance. There
may in general be many possible situations consistent with his facts. In order
to do his job, he must (if possible) find an action that would be acceptable
for any situation consistent with his knowledge.

In terms of this simple model, we can say that an agent's knowledge
at any time is sufficient for his task if there is some action that would be
acceptable for any situation consistent with his knowledge.

21

Formalizing Need-to-Know

We formalize the notions that we have introduced so far by using the following

primitives:

• S : the set of possible situations. In the following, the word "situation"
refers to a complete specification of the relevant facts about the domain
that the agent must make judgements about. Both the state of the
computer system the agent is working with and facts about the outside

world may be facets of the total situation.

• (- : the satisfaction relation. If $ is any statement about a situation,
then the expression «h$ will be said to hold if $ is a true statement

about situation s.

• K, : the set of possible knowledge states of the agent. We will leave
the precise nature of these knowledge states unspecified for the sake of
generality. The simplest model of an agent's knowledge at a given time
would be simply the data he has received up to that moment. However,
such a model neglects the inferences that the agent might draw from
the data, some of which may not be logical deductions but instead are
likely interpretations of the data. The use of a more general notion of
knowledge opens up the possibility that the agent's "knowledge" can

be mistaken.

• Bk : the belief predicate for an agent with knowledge state k. If $ is
any statement about a situation, then we will say that Bk($) holds if
an agent with knowledge state Bk would believe that <fr holds.

• A : the set of possible actions.

• 1Z : the set of possible results of actions.

• ~» : the consequence relation connecting situations, actions and results.
The expression shö^r will be said to hold if in situation s, action

a "leads to" result r.

For simplicity, we. will ignore how results relate to changes in the situa-
tion, and instead assume that the notion of a good or bad result takes

22

into account such changes of situation. Also, we are ignoring nondeter-
rainism in the transition relation, assuming that an action in a specific

situation leads to a specific result.

• acceptable : a predicate on results indicating that a result is desirable
for the current situation. We will use the notation s h acceptable(r) to
indicate that result r is acceptable for situation s.

Some Definitions In terms of the primitive notions introduced above, we
can define some of the terms needed to discuss need-to-know and situation-
dependent security.

Let us first extend the notion of acceptability to actions as well as results

as follows:

Definition: acceptable(a) = 3r G H : a ~> rkacceptable{r)

In other words, an action is acceptable if it leads to an acceptable result.
As with acceptable results, an action is only acceptable with respect to a sit-
uation. We will write s h acceptable(a) to indicate that action a is acceptable

in situation s.
In the next two definitions, we can classify knowledge states according to

how accurately and how completely they reflect the situation.

Definition: k £ fC is accurate for situation s if for all situa-

tional statements $, s h Bk($) -> $•

Knowledge state k is accurate for a situation if everything believed by an
agent with that knowledge is true of the situation. If a knowledge state is
inaccurate, that means that it contains partially false knowledge.

Definition: k £ JC is conservative in situation s if for all actions
a, s h Bk(acceptable(a)) —> acceptable(a).

Introducing the idea of conservative knowledge takes into account that
it is not actually necessary for an agent's beliefs to be completely accurate,
as long as they always err on the side of safety — that is, as long as the
inaccuracy does not lead him to take an unacceptable actiom For example,
if a person trying to repair a lamp believes that touching any bare wire

23

will electrocute him, then such a belief may be inaccurate—it may be the
case that some bare wires, such as the ground wire, are perfectly harmless.
However, the inaccurate belief errs on the side of safety, and therefore is a

conservative belief.
Another important property of knowledge states is decisiveness. Obvi-

ously, if the agent does not know enough to decide what action to take, then
he is unable to do his job, even if his knowledge is perfectly accurate (that is,

he does not have any false knowledge). An agent's knowledge is said to be
decisive if it allows him to figure out some action to take that is acceptable.

Decisiveness is formalized as follows:

Definition: k € /C is decisive if for some action a, Bk(acceptable(a))

holds.

Finally, we can define sufficiency of a knowledge state for a given situation:

Definition: k £ K. is sufficient for situation s if k is decisive
and k is conservative for situation s.

By this definition, knowledge is sufficient for a situation if (1) it allows
the agent to decide on at least one action, and (2) whatever action the agent
decides to take is actually acceptable for the current situation.

Necessary Knowledge and Need-To-Know We have said when an
agent's knowledge is sufficient for him to perform his job, but we have not
said when it is necessary, which is the basis for need-to-know restrictions.
We will say that a particular fact (situational statement) is necessary for the
agent to know if, whenever he has sufficient knowledge to perform his job,
he will be able to deduce that fact. In other words:

Definition: <& is necessary for situation s if for all k € IC,

sufficient(k) -> Bk($).

Naively, one might think that applying the principle of least privilege,
that an agent should only be given information if it is necessary for his or

her job. We can formalize this as follows:

24

Definition: k G fC conforms to the principle of least privilege
for situation s, or is necessary, if for all situational statements $,

s h Bk($) —> necessary($).

Unfortunately, this interpretation of the principle of least privilege often
cannot be used in practice, for the simple reason that necessary knowledge
may not be sufficient. In other words, it could be that for some situation s:

The principle of least information fails for s if VA; € K, : s h
necessary(k) —■* ->sufficient(k)

In other words, in some situations you need to know something that you do
not need to know. This could be illustrated with a simple example. Consider
a scenario in which an agent must choose between two possible buttons, a red
button and a green button. There are four possible situations: A, B, C, or
D. In situation A, only the red button is acceptable, in situation B, only the
green button is acceptable, and in situation C, either button is acceptable.
In situation D, the agent should not push either button.

Now consider the agent's knowledge in situation C. The agent could be
told any one of the following four statements:

1. The red button is acceptable.

2. The green button is acceptable.

3. Both buttons are acceptable.

4. At least one of the two buttons is acceptable.

The first three statements fail to conform to the principle of least privilege.
It is not necessary for the agent to know that the red button is acceptable,
since he could take an acceptable action (namely, push the green button)
without knowing that the red button is acceptable, as well. Similarly, it is
not necessary for him to know that the green button is acceptable, and it is
certainly not necessary for him to know that both buttons are acceptable.

The last statement in the list above contains only information that the
agent needs to know. But it is not sufficient, since it does not allow him to
make a decision: he doesn't know whether to push the green* button or the

25

red button. If the agent is to be given sufficient information to do his job,
he must be given some information that is not necessary.

We can amend the naive formulation of the principle of least privilege
by interpreting it as the principle of minimal privilege, with the following
definitions:

Definition: For kuk2 € K, we say that fcj < k2 if for all
situational statements $, Bkl($) —► Bk2{$)

This definition says that knowledge state kx is less than or equal to knowl-
edge state k2 if every statement known by an agent with knowledge &i would
also be known by an agent with knowledge state k2. In terms of this par-
tial ordering on knowledge states, we can define what is minimally sufficient
knowledge for a given situation.

Definition: k e K, conforms to the principle of minimal privi-
lege for situation s, or is minimally sufficient, if s h sufficient(k)
and for all k' e £, if s h sufficient(k'), then k < k'.

The principle that an agent should be given a minimally sufficient amount
of information, has one problem: there may be several different knowledge
states that are both minimally sufficient. Therefore, the principle does not
uniquely specify what information should be given to the agent. In order
to address this issue, it is necessary to re-examine the reasons why agents
should be given a minimal amount of information, in the first place.

2.4.2 Temptation and Trust

The reason that one tries to minimize the amount of information given to
an agent is the risk that the agent might misuse the information (or else,
inadvertently pass the information along to someone else who might misuse
it). But what, exactly, does it mean to misuse information?

This is a complicated question, but once again we will try to illustrate
some of the major issues by constructing a simple model. The issue of misuse
of information arises when one considers the possibility that an agent may
be motivated by goals other than doing his job well. These other motiva-
tions need not be as nefarious as treason or greed. An agent could also be

26

motivated by simple curiosity, or the thrill of getting away with something
(as hackers often are).

It is obviously impossible to construct a rigorous model of human moti-
vations, so instead we will just postulate their existence. We formalize it in
terms of the temptations, risk and plausibility.

For each k G K let temptingk is a predicate on the set of results
71. We say that temptingk(r) holds if it the agent with knowledge
k might be tempted to try to achieve result r.

Let undesirable be another predicate on the set of results 71.
We say that undesirable(r) holds if the agent will try to avoid
result r. For example, punishment is an undesirable result.

For each k G JC, let Pk be the plausibility predicate for an
agent with knowledge k. We say that Pjt($) holds if an agent
with knowledge k would believe that statement $ is plausible.
This is much weaker than believing it is true.

We can define risky actions in terms of plausibility and undesirable results:

Definition: riskyk(a) = Pk(3r G 71 : a ~> rkundesirablek(r))

This definition says that an action is risky for an agent if it is plausible
(not necessarily certain) that it will lead to an undesirable result. In a more
sophisticated model, whether an action is considered risky or not would be
relative to the temptation: if an action is very tempting, then it would take a
large risk to deter an agent from taking the action, while a lesser temptation
could be deterred by a smaller risk. However, in our simplified model, we
will only consider the extreme case of risks that the agent will avoid in all
circumstances.

Now, we can extend the notion of a temptation to an action as follows:

Definition: temptingk(a) = Pk(Br G 71 : a ~> r&temptingk(r))

This definition says that an action is tempting if it is plausible that it
might lead to a tempting result. Why, in the definition of temptations, is it
important that plausibility, rather than belief, be used? The reason is that

27

people do not have to be assured of a reward in order to take an action; it
is enough that that there be a plausible chance for a reward. For example,
if a thief is walking through a building, looking for valuables, he will try a
door on the plausible assumption that it might be unlocked, and that there
might be something valuable behind it. He might have no reason to believe
that the door is unlocked, but he could still decide that it is worth a shot.

In these terms we can say that a knowledge state is dangerous if there is
some action that is tempting, but not risky.

Definition: dangerous(k) = 3a € A : temptingk(a)k^riskyk(a)

This definition calls a knowledge state dangerous if the agent with that
knowledge state would be tempted to do some action motivated by something
other than the job he has to perform. This definition doesn't consider the
harm that an agent might do. In some cases, one might allow an agent to
be tempted, in the hopes that the agent could be caught. For such a trap
to work, it would have to be the case that the agent's beliefs about the
plausibility of his getting caught would have to be inaccurate. One way to
accomplish that is to have alarms that are set off by suspicious behavior, and
keep the existence of these alarms secret.

If there is no reason to suspect that there is a malicious agent involved,
then the goal of system security designers should be to try to avoid putting
agents into temptation. In other words, try to keep the agents from having a
dangerous amount of knowledge. We are now in a position to give a definition
of the trustworthiness of an agent:

Definition: An agent is untrustworthy in situation s if for all
knowledge states k G /C, s h sufficient(k) —> dangerous(k).

In other words, an agent is untrustworthy in a given situation if it is
impossible to give the agent sufficient information for him to do his job
without also making some actions tempting.

2.4.3 Summary and Conclusions

Although we are using a very simplified model of an agent's behavior, there
are a few important conclusions that can be drawn from it. Below is a
summary of the model and its conclusions.

28

1. An agent has sufficient knowledge to do his job if he is able to determine
an acceptable action to take.

2. It is not necessary for an agent's knowledge to be accurate, as long as
it is conservative—that is, as long as it errs on the side of safety.

3. An agent needs to know a fact in a given situation if it is impossible to
give the agent sufficient knowledge without letting him know the fact.

4. In general, there is no unique smallest amount of information that can
be given to an agent that is sufficient for him to do his job.

5. Trustworthiness is situation-dependent. It is not an all-or-nothing
thing. An agent may be completely trustworthy in normal circum-
stances, but will be tempted to misbehave in some situations. For
example, if suddenly there would be a large financial reward for taking
a certain action.

6. Certainty of the result is not necessary for an action to be tempting for
an agent. It is not enough to prevent an agent from knowing sensitive
information for certain. A plausible guess that an agent can make
will sometimes be as damaging as a real leak of information. The most
extreme case is of course passwords: if an agent believes some passwords
to be plausible, he might try them out. To avoid the temptation of
trying out passwords, password guidelines should be announced so that
everyone knows that easily guessable passwords are not being used.

7. Certainty of the result is not necessary for an action to be considered
risky for an agent.

8. Increasing the risk associated with misbehavior (for example, by audit-
ing) can decrease the temptation and increase the trustworthiness of
the agent.

Future Work on Need-To-Know

There is much work that needs to be done in order for a theory of need-
to-know to have practical benefits in the security of adaptive systems. The
biggest problem is that so many of the basic elements of the theory are

29

unknowable in general, such as what results an agent would find tempting
and how much of a risk an agent would be willing to take. For the work to be
applied to actual systems, guidelines must be developed for making informed
estimates for these unknown factors. The following list describes some of the
work that must be made to make the theory more realistic and more usable.

• Classification of types of risks, temptations, and uses of knowledge.

There are different uses that a malicious agent can find for knowledge.
Some knowledge, such as passwords, are keys that give an agent more
power. Other knowledge is a commodity that can be sold (for example,
to a foreign government), and is not used directly by the agent. Finally,
knowledge can increase the certainty about the results of actions, thus
making some actions more tempting and others less tempting. In order
to have a more complete understanding of security, it would be helpful
to have a classification of the different uses of knowledge and the most
effective measures (auditing, or access control) that can be used to
prevent its misuse.

• Extending the model to allow for risks to be relative to the temptation.

• Develop the connections with

— Lattice-based security.

— Information flow.

— The aggregation problem.

• Develop methodology/tool for

— Analyzing need-to-know, risks, and temptations.

— Partitioning information to minimize temptations.

— Creating roles that require sufficient knowledge that is not dan-
gerous.

— Identifying situations where trust breaks down. There are several
aspects of this that might be considered:

* Analysis before fielding to identify situations that might lead
to a breakdown of trust. The security policy and enforcement
mechanisms should take such an analysis into account.

30

* Automated detection of dangerous situations, so that an alarm
can be given.

* The use of traps for malicious agents. To the extent that it
can be determined ahead of time which situations are most
likely to tempt an agent to betray his trust, it may be possible
to set up a trap to catch such agents.

31

Chapter 3

Task 2: Maintaining Security
in Adaptive Systems

3.1 Introduction
When switching between configuration modes that involve some change in
security enforcement, there is the problem of ensuring that all of the mech-
anisms to support security are in place. The aim of this task is to outline
a procedure that helps designers or developers, or evaluators, to check, sys-

tematically, that everything is indeed in place.
We first remark that we are talking about functional adaptation (con-

figuration) that has major impact on security enforcement. This need not
necessarily involve a change to the security policy in the sense of who is
cleared to see what, though these adaptations are included here. Adapta-
tions involving clearances were the subject of Task 1, where their special
problems were analyzed in detail.

We will begin by identifying more precisely the type of adaptation that
is under study. After that, we will explain why a problem arises, and what
makes this situation different from the usual problems with dynamically re-
configurable systems that do not involve adaptive security. Finally, we will
elucidate our approach to handling this problem.

32

3.2 The Kind of Adaptation Involved

We will illustrate the kind of adaptation at issue here with examples. Suppose
that we have a system with four modes: normal, extraordinary, training,
and maintenance. We can think of this as a system involving ground bases,

aircraft, and C3I.
Consider a processor that handles both high and low sensitivity requests.

Suppose that in normal mode of operation, a scheduler uses a fixed time-
slicing algorithm and thereby avoids any covert timing channel. In a crisis,
we are prepared to tolerate a greater rate of possible information leakage
(it may be also that certain high data in a crisis does not have much value
for long). So suppose further that when the system makes the transition
from normal to extraordinary, the scheduler algorithm changes to a more
efficient algorithm driven by criticality, where the high requests are the most
critical. Thus in this new mode, we have a potential covert timing channel.

Consider next an encryption component that uses long encryption keys
when the system is in normal mode of operation. When switched to
extraordinary mode, the encryption is performed with shorter keys, pro-
viding less security.

Suppose again that highly sensitive material is stored on disk and avail-
able in normal or extraordinary mode. When changing to training (or
maintenance) mode this sensitive data must be removed and less sensitive
data must be substituted for the original data. An example of this would be
the case where locations of friendly and enemy positions are in a database
on the disk, and we wish this knowledge to be secret, but we wish to train
people on functionally similar but fictitious data.

A final example of security-relevant reconfiguration that occurs as a re-
sult of a mode change, concerns the re-routing of messages. Sensitive mes-
sages that would be sent over secure channels in normal mode may be sent
encrypted, or even unencrypted, over insecure channels in extraordinary
mode. Circumstances that could warrant this reconfiguration be generated
from among the following: high time criticality, overloading of secure facili-
ties, unavailability of secure facilities, etc.

We have just described four cases of security adaptations that occur along
with mode changes. We will explain what sets this sort of adaptation apart
from the more standard sort of dynamic reconfiguration. After that, we
address the main concern of this chapter - what to do about the security

33

problems.
Systems without adaptive security are currently built that have various

dynamic reconfigurations incorporated, like re-assignment of processing in
the case of processor failure (fault tolerance), or message re-routing in re-
sponse to load, to achieve maximum throughput. But in the usual case, the
security enforcement on information, users, and processes does not change.
The designers must ensure that the proper, constant, security is enforced
across all configurations. Examples of what must be ensured are: that en-
cryption is performed for designated message and channel types; that MAC
and DAC are checked; that the security mechanisms like the form of MAC
and DAC are consistently interpreted and enforced in disparate systems.

It is the responsibility of the designers of these systems to impose system-
wide methods of doing things so that when the system is reconfigured, se-
curity needs are met. The uniformity of the requirements (a message of
such-and-such a type must always be sent over a channel of such-and-such
a type) is of some assistance in designing these systems, and motivates the
solutions. Providing these services is certainly an important and difficult
issue, but it is an issue that is. not specific to adaptive security.

What is our responsibility, is to present a procedure that will meet new
problems that are consequences of the adaptive nature of the security — the
sorts of problems that arose in the examples above. We will deal with this
in the next section.

We note however that in some circumstances there is some overlap be-
tween the adaptive security problems and the conventional ones. For exam-
ple, if fault-tolerance causes a disk used for secret data to be re-assigned to
unclassified data then while no inherently security-related mode change has
occurred, there are adaptive security consequences. We will discuss how to
treat these cases in section 3.3.2.

3.3 Maintaining Security in Adaptive Sys-
tems

Our aim here is to describe a systematic procedure that will help designers
or evaluators to ensure that all the security measures have been taken for an
adaptive system. We identify two key goals in handling the adaptive security

34

problem:

1. Ensure that after a transition, the system is in a consistent, legal state
(from the security point of view) for the new configuration mode. This
amounts to meeting an initial condition for a mode.

2. Ensure that the transition itself does not create any security violations.

Consider the first of these in the context of our some of our examples
above.

When changing back from extraordinary mode, in the case where short
encryption keys have been used, to normal mode, care must be taken to reset
all the mechanisms - e.g., if there is a table of pre-selected short keys, it must
be emptied and refilled with longer keys.

If a disk used for low-sensitivity data is to be re-assigned to high-sensitivity
data, all rights to interact with the disk must be re-set correctly.

When making the change that allows sensitive messages to be re-routed
across insecure channels, various tables have to be re-written to perform
this. This must be done at all appropriate points in the network, and done
carefully so that just the designated insecure channels are used.

Finally, suppose in a crisis (not one of our four examples here, though if
added it would presumably be reachable only from extraordinary mode)
we reset the access control mechanisms to allow a user access to information
he is not normally allowed to see. Whatever solution (see chapter 2) is used,
there are potentially many entries in the authentication databases and/or
files that must be set (including audit logging).

Now let us look at item 2 above. The transition action between modes
may result in a legal state, in the above sense, yet in itself cause a security
breach.

The archetypal example of this is failure to sanitize. We gave an example
above where the system changes from normal mode to training mode and
a disk has to be sanitized. Suppose that the disk was originally labeled
SECRET, and is re-labeled UNCLASSIFIED. Suppose now that the disk was
not sanitized, so that UNCLASSIFIED users can see SECRET information
left on the disk. The system is in a properly configured state, and there is
nothing in the state of the system that can indicate that the data on the disk
is SECRET — put loosely, the system cannot "know" that the data bits on

35

the disk constitute SECRET data. The breach of security occurred during
the transition, in placing the label UNCLASSIFIED on an object containing
SECRET data.

We see that both items together cover what is needed to ensure secure
functioning in the face of adaptivity. In the following subsection we will
outline how to apply this method.

3.3.1 Systematic Analysis of the Security of Adaptive
Systems

The first step in the analysis is to identify the various configuration modes.
For example, we identified four in our example above. The modes need
not necessarily have names that are recognized on, or incorporated into, the
system, though it would be useful if that were the case. We also identify the
possible transitions between modes. There will not necessarily be a transition
between any two modes.

We pause to remark on the number of modes involved. As discussed
above, these are not all possible functional configurations that a system could
be in. The number of modes that involve security adaptations of the kind
we are concerned with, will be small enough that examination of all of them
is feasible.

Much of the system will remain unchanged when in the various modes,
and this common part will be analyzed once. Then, for each mode, we
address the two items listed above.

The first item — the list of things that have to be achieved after a transi-
tion to a mode — is associated with the mode in question. Note that this list
will be associated with the mode, rather than the particular transition into
the mode (there may be more than one). This is because the list depends on
the mode (what its proper states are), and not how the mode was entered.
It is true that achieving those goals will be more or less work depending on
which mode the system came from (in some cases nothing may need to be
done), but breaking the analysis down further will complicate the picture,
while not usually providing much benefit.

The second item — the list of things that have to be done to ensure that
the transition itself does not generate any security violations — is associated
with particular transitions. This list will include things like the requirement

36

that a disk be sanitized. We remark that not all of these procedures can
necessarily be executed automatically on a computerized system. It may be,
for example, that on transition from normal to maintenance mode, the disk
in our example must be physically removed and subjected to sanitization
outside the computer system. The full instructions for this procedure will be
detailed in the analysis component associated with the transition.

The analyst uses this framework to cover systematically the special secu-
rity needs of an adaptive system. In chapter 4, we will describe how a system
is modeled according to this method of decomposition. We will use as an
example the design tool RDD-100 and show how to attach the information
described here to a model of the system being studied.

3.3.2 Other Adaptations That Have Security Conse-
quences

At the end of section 3.2 we mentioned that certain other functional adap-
tations that do not inherently have anything to do with security may have
adaptive security consequences. An example of this would be unpredictable
fault-tolerance reconfiguration that requires a disk previously dedicated to
SECRET material to be re-assigned to UNCLASSIFIED material. The issues
discussed above arise also in this case. To handle this, we do not introduce
any new modes into the above model, but we add a further transition from
a mode to itself (for any mode in which this can occur). We attach the same
sort of information to this transition, that we would to any other. To uncover
any of the exceptional adaptations of this kind, the analyst must check all
of the ordinary adaptations to ensure that all potential security problems
are handled by pre-defined mechanisms. Some kind of broad classification
scheme will be needed to avoid an excessive number of cases. Any problem
found will be handled by adding a further transition as described.

3.3.3 Large Scale Systems

We briefly mention another setting that poses adaptive security problems.
This setting involves systems that are outside the range of systems that
this project is concerned with. When systems (e.g. a WAN) become so
large that no centralized component has a full description of the system or

37

even knows the extent of the system, special techniques have to be used to
keep the system in some sort of acceptable configuration. This applies to
security also - heterogeneous components with different security polcies may
be connected, and moreover, security policies will evolve with time. This
problem will become more important in the future, and is an important
research topic.

38

Chapter 4

Task 3: Risk Assessment

4.1 Introduction

In this chapter we describe how to assess risk for adaptive systems. There are
currently several methodologies for risk analysis of (not specifically adaptive)
systems. Our approach is to take a recognized methodology and enhance it
to encompass adaptive systems. We will use the decomposition described
in chapter 3 to handle the complexity of the multiple operational (security)
modes of an adaptive system. Moreover, this decomposition provides a struc-
ture that surfaces the new risks to which adaptive systems are vulnerable, as
described in Chapter 3.

We will begin by briefly describing two major risk analysis methodologies,
one quantitative and the other not. The non-quantitative methodology will
be used in our work here. We later suggest linking this analysis with the
quantitative approach as a sensible future goal.

4.2 Background to Risk Assessment

Current results on risk assessment primarily consist of management guide-
lines for controlling risk in the absence of quantitative means for measuring
it. There are software tools for enforcing managerial policy, though, and for
making quantitative estimates of risk. There are two different approaches to
risk management that we will describe here, one derived from CSC-STD-003-
85 [Nat85] (the "Yellow Book"), and the other incorporated into the System

39

Security Profiles [Fin94] of the NSA System Profile Group.

4.2.1 Yellow-Book Style Risk Analysis

The Yellow Book requires computing a risk index for an intended system,
assigning a security mode to the intended system operation, and then using
a trusted computing base for the intended system whose Trusted Computer
System Evaluation Criteria ("Orange Book") [Dep85] division and class rat-
ings meet minimum standards that the Yellow Book sets as functions of the
risk index and security mode. The process for doing this has been changed
and simplified slightly by later publications such as [Dep88]. The risk in-
dex is generally the intended system's data sensitivity rating minus its user
clearance rating. See [Nat85] for more details.

Landwehr and Lubbes [LL85] of the Naval Research Laboratory developed
extensions to the Yellow Book risk assessment process, creating an analysis
method that incorporates further relevant information — "processing capa-
bility" factors (see [LL85] for details).

ANSSR

The Analysis of Networked Systems Security Risks (ANSSR) tool [BCK90,
Bod92, BC93] incorporates and automates basic Yellow Book, processing ca-
pability, and networking considerations analyses. It also incorporates consid-
eration of particular attack scenarios, with considerations such as a potential
penetrator's potential gain and risk of apprehension.

ANSSR offers three types of analyses, requiring progressively more detail
about the system being analyzed: Yellow Book; Extended Yellow Book; and
Scenario Analysis. This last type of analysis requires the analyst to enter
event-sequence scenarios (e.g., user goes bad, user logs in, etc.). The analyst
makes numerical estimates such as the sensitivity of data exposed by an
event, or the effort required by an attacker of a given capability, etc. ANSSR
calculates likelihoods of events in relation to system states. ANSSR also
makes estimates about the expected losses in a time period (normally a
year), based on its model.

40

4.2.2 System Profile Style Risk Analysis

The risk analysis in System Security Profiles makes no attempt to compute
risk indexes, and does not involve quantitative estimates of risk. The analysis
comprises the compilation of all known system weaknesses together with
related security concerns, and this is presented in a highly structured way.
The System Profile approach also covers risks other than those of disclosure
from deliberate attack (the only risks considered in ANSSR) — e.g., the risk
of loss of service from physical damage.

In more detail, the System Profile approach calls for listing all known
system weaknesses, and for each weakness listing the following:

• which engineering tests establish the existence and properties of the
weakness;

• all known vulnerabilities resulting from that weakness;

• all known threats exploiting that weakness;

• an assessment of whether the weakness is tolerable, with the reasons
for this assessment; and

• recommendations on system operation (e.g., special restrictions) for
dealing with the weakness.

The System Profile approach treats a vulnerability as arising from the com-
bination of a weakness and a threat capable of exploiting that weakness.
For each vulnerability, it calls for describing the vulnerability, assessing the
risk posed by that vulnerability, and making recommendations on what, if
anything, could be done to minimize the risk posed by that vulnerability.

The NSA System Profile Group has built RDD-100 (see [Asc93]) schema
to provide tool support for this analysis. The parts of a System Profile
description of risk are pieces of text that are implemented as attributes of
elements in an RDD-100 database. RDD-100 creates element-relationship-
attribute models, so the text fragments describing risk properties are at-
tributes of elements linked to each other by various relationships. In the
RDD-100 System Profile implementation, for example, an element of type
Weakness is linked to an element of type Vulnerability by a results in
relationship. See Fink [Fin94] for details.

41

The System Profile approach is simpler and more straightforward than the
quantitative approach, and so is the appropriate starting point for the first
development of our methods for handling adaptive systems. The description
here was intended to give a general view of the System Profile approach.
Further description of relevant details will be given in the next section, where
we concentrate on extending the approach for our needs.

4.3 Security Profiles of Adaptive Systems

This section describes how to create a security profile of an adaptive system.
This method is based on the system security profiles proposed by the Sys-
tem Profile group at NSA. Section 4.3.1 provides necessary background on
system profiles as proposed by NSA. Section 4.3.2 describes how to extend
this approach to describe an adaptive system in a way that focuses on and
highlights the system adaptations. This section also describes how the se-
curity analysis is added to the profile. Finally, section 4.3.3 describes how
RDD-100 can be used to support this process.

4.3.1 System Security Profiles

System security profiles highlight and document the essential security fea-
tures of a system. Ideally, a profile of a system is produced in concert with
the development of the system so that the profile is available for use by
system integrators in making informed decisions about the suitability of or
proper use of the system. The effort to produce a profile may be limited in
comparison to a formal Orange Book evaluation, but a profile is expected to

be available in a more timely manner.
The system profile group of the NSA has proposed a standard form for and

a methodology for producing system profiles. Key elements of this proposal
are described here; for more details see the draft report [Fin94].

A profile contains descriptions of the security policy for the system, a
description of the system architecture, a description of the systems security
services, assessments of these services, descriptions of the assurances that
the system offers, descriptions of the support services the system requires,
a system vulnerability assessment, and guidance as to how to operate the
system securely. Of these, the system vulnerability assessment is considered

42

to be the most important.
A system profile is described in terms of elements and relationships be-

tween these elements. For example, the system architecture is described in
terms of the system components; components are decomposed into subcom-
ponents. The system vulnerability assessment is organized in terms of sys-
tem weaknesses, threats to the system, and system vulnerabilities. A system
weakness that is exploited by a system threat results in a system vulnerabil-
ity. The system vulnerabilities are connected to the system description by
attaching weaknesses to components. In such a case, a component is said to
exhibit the weakness.

Each element of a system profile also has attributes associated with it. For
example, the description attribute of a system weakness describes a problem
with or a concern about the system. The description attribute of a system
threat describes the capabilities, intentions, and attack methods of an adver-
sary. A system vulnerability has three attributes of interest: a description, a
recommendation, and a risk. The description attribute tells how to perform
a particular attack and what the results will be. The recommendation at-
tribute provides recommendations for fixes. The risk attribute describes the
ease of exploitation of the vulnerability, opportunities that may exist to ex-
ploit the vulnerability, and the risk that an exploitation of the vulnerability
will be detected.

4.3.2 Profiles of Adaptive Systems

We are concerned with adaptive systems in the sense of chapter 3. An adap-
tive system will be described in terms of its modes of operation and the
transitions between these different modes.

An adaptive profile organizes information in three different ways. First, to
understand the security of a mode, it is necessary to understand which parts
of the system have been adapted for that mode and for each adapted piece
how the piece operates in this mode. The first goal of our security analysis is
to focus attention on the security of the system when it is operating in each
mode. Second, to understand the security of transitions between modes, it
is necessary to look at the many different changes in many different parts of
the system that may occur. Another goal of our security analysis is to take
a look at the effects of these transitions and the security issues that arise
during a transition. Third, there may also be many parts of*a system that

43

do not adapt. These parts of the system will be common to all modes and
the security concerns for these parts are less likely to be effected by mode
changes. The third goal of our security analysis is to organize the security
analysis of common parts of the system centrally so that it does not need to

be repeated for each mode.

The Generic Model

An adaptive profile starts with a generic model of the system, as illustrated
in Figure 4.1. The purpose of the generic model is to provide a baseline
description of the entire system. Parts of the system common to all modes
can be described in full detail in the generic model. If the security analysis
of the system identifies a weakness of one of the common components then
this weakness can be attached to that component in the generic model; if this
weakness can be exploited by a threat then the resulting system vulnerability
must be reported. This part of the profile is the same as for system profiles.
Components that are subject to adaptations can only be described in general
terms in the generic model. General functionality, and possibly descriptions
of the alternative ways of functioning, can be provided here, but details
should be left to the descriptions of individual modes.

Modes of the System

In addition to the generic description of the system there is a separate de-
scription of each mode. Each description of a mode concentrates attention
on those components that are adapted for that mode. More detailed descrip-
tions and additional documentation are provided in the mode description
for the adaptive components. This additional information will detail how a
component works in this particular mode. This may require a more detailed
description of the component than was provided in the generic model of the
system — e.g., the component may be further decomposed into subcompo-
nents. Components that are not adapted for the mode are described using
the same descriptions as are used to describe the component in the generic

model.
For our example system, three modes are illustrated in Figures 4.2, 4.d,

and 4.4. In these figures, the components that are shaded dark gray are the
components that are adapted for the mode. Components whose functional-

44

L s. v

I
Ü o
o

S3

I

s« if
si
r.o

I
o °

1 &~l 2 ■F

5 o
2 o.

F

s Ö
cl

Figure 4.1: The Generic System

45

ity does not change in the mode are unshaded or shaded light gray; these
components are the same as for the generic model. Different kinds of adap-
tations are possible for different components; these different adaptations are
highlighted in the figures by outlining the different adaptations using dif-
ferent dashed lines. For example, first mode is called Normal Mode and is
illustrated in Figure 4.2. In this mode there are four different adaptations,
effecting six different components. In Extraordinary Mode there are four
adaptations, effecting five different components and in Training Mode there
is one adaptation, effecting only one component.

Once one has a description of a mode of a system, the security of the sys-
tem operating in that mode can be analyzed. As for system profiles, this may
result in the discovery of system weaknesses. These weaknesses may be ex-
ploited by system threats resulting in system vulnerabilities. The weaknesses,
threats, and vulnerabilities that are specific to a mode are documented as
part of the mode description. A weakness that is exhibited by an adaptive
component is associated directly with that component in the description of
the mode. This also associates any threat that can exploit this weakness and
any resulting vulnerability indirectly with the adaptive component.

In reviewing an adaptive profile, it is highly desirable to be able to quickly
identify which components may have weaknesses that are specific to a mode.
In Figures 4.2, 4.3, and 4.4 this is easy to do for adaptive components since
these components are shaded dark gray. However, it is possible that a weak-
ness in an adaptive component will result in a weakness in a component at a
higher level in the component tree, that is, weaknesses may propagate up the
component tree. Thus it is possible that a non-adaptive component, whose
descriptions are taken from the generic model, will have weaknesses that are
specific to a mode. This kind of weakness is called a derived weakness. In
Figures 4.2, 4.3, and 4.4, components with derived weaknesses are are high-
lighted by shading them light gray. This shading allows an analyst to quickly
locate all components that have weaknesses that are specific to a mode.

A mode also has associated with it a set of initial conditions that describe
conditions that must be met in order to enter the mode. Initial conditions
are described more fully in chapter 3.

46

2""

ß L

I i
i §

IS ® o

Figure 4.2: Normal Mode

47

E

?.

ß 03

2

Is E

£? i
S*

b
s

f <
5

5

it
<D O

Figure 4.3: Extraordinary Mode

48

E

ß

E

2

■5
(T S

1
Z 1
^

E

*8 F

2 S

8
I
IU

s

5

8,
!!
2

I
i

1» ■

a)

s c
CO
2
|
<
2

I

Figure 4.4: Training Mode

49

Figure 4.5: The modes and transitions of the example system

Transitions between Modes

A transition of an adaptive system is a change from one mode to another in
response to a change in the external environment of the system. Transitions
are built into the system; they are a part of the normal operation of an
adaptive system. What is important about a transition is how that change
in operation of the system affects the security of the system, that is, the
security concerns of the system operating in one mode may be different from
the security concerns of the system operating in another mode. Also, the
transitions may be constrained so that it is only possible for the system to
change from certain modes to certain other modes. It may not be possible
for an adaptive system to switch between any arbitrary pair of modes.

An adaptive profile will list all the transitions that are possible in the
system. Each transition will have a set of security concerns associated with
it. A security concern details what is necessary to make sure that the security
mechanisms required for the new mode are in place. Security concerns are
described in detail in chapter 3.

In the example of Figure 4.1, there are four possible transitions: from
Normal to Training, Training to Normal, Normal to Extraordinary, and Ex-
traordinary to Training. There are no direct transitions between Training
and Extraordinary modes. These transitions are illustrated in Figure 4.5.

4.3.3 Use of Tools: RDD-100

It is quite feasible to provide tool support for this analysis, using existing
tools. As one approach to this, this section shows how to adapt the RDD-
100 database schema provided by the System Profile Group of the NSA to
support adaptive profiles. First we give an overview of the NSA schema and

50

then describe our extensions.

System Profile Data Base Schema

RDD-100 is a systems engineering tool that can be used to support profil-
ing. For example, the system profile proposal described in section 4.3.1 uses
RDD-100. RDD-100 offers a powerful entity-relationship database and so-
phisticated graphics that can be used to organize and display large amounts
of information and the complex relationships between different pieces of this
information.

The RDD-100 database organizes information in terms of instances of
different element types and relationships between elements. For example,
a system is represented in RDD-100 by instances of elements of type Sys-
tem and Component. The fact that a system is built from components
is represented by the relationship built from between elements of type Sys-
tem and elements of type Component. An example of this can be seen
in Figure 4.1 where the box labeled "G: The System" is an instance of type
System and the boxes labeled "G: Data Processing..." and "G: System
Functions" represent the two Components that "G: The System" is built
from. Each element also has attributes that provide information about the
element. For example, most elements have a DESCRIPTION attribute that is
used to describe the element.

The NSA system profile extends the standard RDD-100 database by
adding several element types; three of these types are Weakness, Threat,
and Vulnerability. Elements of type Weakness can be related to elements
of type Component by the relationship exhibits. Elements of type Threat
can be related to elements of type Weakness by the relationship exploits.
A Weakness is related to any resulting Vulnerability by the relationship
results in.

The DESCRIPTION attribute of a Weakness describes the weakness ex-
hibited by the component. The DESCRIPTION attribute of a Threat de-
scribes the threat to the system. A Vulnerability element contains the
attributes DESCRIPTION, RECOMMENDATIONS, and SECURITY RISK that
give details on how to perform the attack, recommendations for fixes, and
describe the ease of exploitation and likelihood of detection, respectively.

51

Adaptive Profile Data Base Schema

The data base schema for system profiles is extended by adding elements that
represent modes and transitions. A mode of a system is represented by an
instance of the type Mode. The DESCRIPTION attribute of a Mode element
is used to describe the mode and any information that applies to the mode
as a whole. The adaptive components of the mode are grouped together
according to the adaptation affecting the components. A single adaptation

may affect many components and grouping these components together makes
it easy to identify which components are affected by which adaptations. An
element type, Adaptation, is introduced that is used to group related adap-
tive components together. The DESCRIPTION attribute of an Adaptation
is used to describe, in general terms, the particular adaptation. Elements of
type Adaptation and elements of type Component may be related by the
relation directly affects. All the Components targeted by this relation are
affected in some way by this adaptation. A Component may be affected by
more than one adaptation.

The Extraordinary Mode of Figure 4.3 is represented in the RDD-100 data
base using an element named "M2: Extraordinary" of type Mode. The tar-
gets of the directly effects relation for this element are three elements of type
Adaptation named "M2: Criticality Scheduling", "M2: Short Encryption
Keys", and "M2: Alternate Routing". The "M2: Criticality Scheduling"
Adaptation directly affects the "M2: Message Queues" Component and
represents the scheduling of messages for processing based on their critical-
ity. The "M2: Short Encryption Keys" Adaptation directly effects the
"M2: Encryption" Component and represents the use of short encryption
keys for the encryption of all outgoing messages. The "M2: Alternate Rout-
ing" Adaptation directly effects the "M2: Encryption", "M2: Network Re-
ceiver", "M2: Network Router", and "M2: Network Sender" Components
and represents the reconfiguration of the network to allow sending messages
over insecure links if there is no secure path available to their destination.
Note that the Component "M2: Encryption" is involved in two adaptations.
In addition each of these Components can have a Weakness attached to
it if one is uncovered during the security analysis.

A Mode must also direct attention to those components that exhibit
derived weaknesses. The relation indirectly affects relates the Mode with the
Components that are indirectly affected by the mode. In the example, the

52

"Extraordinary" Mode indirectly affects the Components "M2: Network
Manager" and "M2: Cryptography". Each of these Components should

have a Weakness attached to it.
Initial conditions are associated with a Mode using the relation requires.

The targets of this relation are elements of type InitialCondition. Each
element of this type describes an initial condition that must be satisfied upon
entering the mode. For example, the "Training" Mode requires the "Disks
are Sanitized" InitialCondition that requires that all sensitive information
has been removed from all disks and the disks sanitized so that no residual
sensitive information remains on them.

Transitions between Modes are represented by elements of type Tran-
sition. The DESCRIPTION attribute describes the transition. A Transition
represents a transition from one Mode to another Mode; the relations starts
in and ends in relate the Transition to the starting Mode and the ending
Mode, respectively.

Each transition has associated with it a set of concerns. These concerns
describe what is required to make sure that all the mechanisms are in place
to meet the security needs of the next mode. Each of these concerns is
described using an element of type Concern. A Transition is related to its
set of Concerns using the relation contains.

The four transitions of the example are represented by four elements of
type Transition: "Normal to Training", "Training to Normal", "Normal
to Extraordinary", and "Extraordinary to Normal". For the "Normal to
Training" Transition, the target of the starts in relation is "Normal" mode
and the target of the ends in relation is "Training".

53

Chapter 5

Future Directions

We give here a brief list of suggested topics for future work on adaptive

security.

• Implement operational aspects of dynamic security lattices

- This would employ both existing and new access control mecha-
nisms, and involve recovery and auditing procedures

• Build tools to support use of task-based policies and the need-to-know

model.

- Such a tool would assist in assigning, understanding, and manag-
ing the powers granted to users of a system.

• Extend the systems profiling style of qualitative analysis of risk with
quantitative analysis

- In particular, link the ANSSR quantitative analysis with the NSA-

style profiles

• Develop RDD-100 or other tool support of risk analysis

• Get feedback on use of methodology

- Assist on security design and analysis of a practical example of an
adaptive security system

54

Bibliography

[Asc93] Ascent Logic Corporation. RDD-100 User's Guide, September
1993. P/N 100096.

[Bad90] L. Badger. Providing a flexible security override for trusted
systems. In Proceedings of the Computer Security Foundations
Workshop III, pages 115-123. IEEE, June 1990. Franconia, NH.

[BC93] Deborah J. Bodeau and Frederick N. Chase. Modeling constructs
for describing a complex system of systems. In Proceedings of the
Ninth Annual Computer Security Applications Conference, pages
140-148, Orlando, FL, December 1993. IEEE Computer Society

Press.

[BCK90] Deborah J. Bodeau, Frederick N. Chase, and Sharon G. Kass.
ANSSR: A tool for risk analysis of networked systems. In Proceed-
ings of the 13th National Computer Security Conference, pages
687-696, Washington, DC, October 1990.

[BK85] W.E.-Boebert and R.Y. Kain. A practical alternative to hierarchi-
cal integrity policies. In Proceedings of the 8th National Computer
Security Conference, pages 18-27, Gaithersburg, MD, October

1985.

[Bod92] Deborah J. Bodeau. A conceptual model for computer security
risk analysis. In Proceedings of the Eighth Annual Computer Se-
curity Applications Conference, pages 56-63, San Antonio, TX,
December 1992. IEEE Computer Society Press.

[CW87] D.D. Clark and D.R. Wilson. A comparison of commercial and
military computer security policies. In Proceedings of the 1987

55

IEEE Symposium on Security and Privacy, pages 184-194, Oak-
land, CA, April 1987. IEEE.

[Dep85] Department of Defense. Trusted Computer System Evaluation
Criteria, December 1985. DoD-5200.28-STD.

[Dep88] Department of Defense. Security Requirements for Automated
Information Systems(AISs), March 1988. DoDD-5200.28.

[FHOT89] Todd Fine, J. Thomas Haigh, Richard C. O'Brien, and Dana L.
Toups. Noninterference and unwinding for LOCK. In Proceed-
ings of Computer Security Foundations Workshop II, pages 22-28.
IEEE, June 1989. Franconia, NH.

[Fin94] James Fink. (Draft) A Description of the System Security Profile
Report Template. National Security Agency, April 1994. Revised
4/29/94.

[LL85] C. E. Landwehr and H. 0. Lubes. Determining security require-
ments for complex systems with the Orange Book. In Proceed-

ings of the 8th National Computer Security Conference, pages
156-162, Gaithersburg, MD, October 1985.

[Nat85] National Computer Security Center. Computer Security Require-
ments: Guidance for Applying the Department of Defense Trusted
Computer System Evaluation Criteria in Specific Environments,
June 1985. CSC-STD-003-85.

[SPV89] Ian Sutherland, Stanley Perlo, and Rammohan Varadarajan. De-
ducibility security with dynamic level assignments. In Proceedings
of Computer Security Foundations Workshop II, pages 3-8. IEEE,
June 1989. Franconia, NH.

[Ste91] Daniel F. Sterne. On the buzzword "security policy". In Pro-
ceedings of the 1991 IEEE Symposium on Security and Privacy,
pages 219-230, Oakland, CA, April 1991. IEEE.

*U.S. GOVERNMENT PmNTING OFFICE: 1995-610-126-50236

56

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

